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ABSTRACT

Many of the recently developed high-resolution schemes for hyperbolic conservation
laws are based on upwind differencing. The building block of these schemes is the averaging
of an approximate Godunov solver; its time consuming part involves the field-by-field
decomposition which is required in order to identify the “direction of the wind.” Instead,
we propose to use as a building block the more robust Lax-Friedrichs (LxF) solver. The
main advantage is simplicity: no Riemann problems are solved and hence field-by-field
decompositions are avoided. The main disadvantage is the excessive numerical viscosity
typical to the LxF solver. We compensate for it by using high-resolution MUSCL-type
interpolants. Numerical experiments show that the quality of the results obtained by such

convenient central differencing is comparable with those of the upwind schemes.
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INTRODUCTION

In this paper we present a family of non-oscillatory, second order, central difference
approximations to non-linear systems of hyperbolic conservation laws. These approxima-
tions can be viewed as natural extensions of the first-order Lax-Friedrichs (LxF) scheme.
In particular, total-variation and entropy estimates are provided in the scalar case, and
unlike the upwind framework, no Riemann problems need to be solved in the case of sys-
tems of conservation laws. The use of second-order piecewise-linear approximants instead
of the first-order piecewise-constant ones, comp ensates for the excessive LxF viscosity, and
results in second-order resolution Riemann-solver-free family of central difference schemes.

The paper is organized as follows. In Secticn 2, we derive our family of high resolution
central differencing schemes, using the LxF solver together with MUSCL-type interpolants.
Thus, at each time-level we reconstruct from the piecewise constant numerical data, a non-
oscillatory piecewise linear approximation of second order accuracy. We then follow the
evolving solution to the next time level, and end up by projecting it back to a piecewise
constant solution. The result is a family of schemes which takes an easily implemented
predictor-corrector form. The resolution of our method hinges upon the choice of certain

local numerical derivatives with which one reconstructs the piecewise-linear MUSCL-type

interpolants from the piecewise-constant data

In Section 3, we concentrate on the scala- conservation law. We discuss a variety of
choices for numerical derivatives, and prove that the resulting scalar family of schemes, un-
der the appropriate CFL limitation, satisfies Loth the Total Variation Diminishing (TVD)
property and a cell entropy inequality. These properties guarantee the convergence to the
unique entropy solution, at least in the genuinely non-linear scalar case.

In Section 4, we describe several ways to extend our scalar family of central differ-
encing schemes to systems of conservation laws. The main issue lies again in the choice
of vectors of numerical derivatives. First, vie describe a component-wise extension for
the definition of these vectors, which share the simplicity of the scalar family of schemes.
Next, we demonstrate the flexibility of our central differencing framework, which enables
us to incorporate characteristic information—whenever available, into the definition of nu-
merical derivatives. We continue, by using -his characteristic-wise framework to isolate
the contact wave where the Artificial Compression Method (ACM) is employed, while
treating the more robust sound waves using “he less expensive component-wise approach.
We end up by presenting a corrective type ACM, which is implemented in a component-
wise manner. This both improves the contact resolution, and retains the simplicity of the
Riemann-solver-free scalar approach.

Finally, in Section 5 we present numerical experiments with our high-resolution non-
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oscillatory central difference schemes, and compare the results with the corresponding
upwind-based ones.

Both the quantitative and qualitative results for a representative sample of compress-
ible flow problems governed by the Euler equations, are found to be in complete agreement
with the resolution expected by the scalar analysis. Taking into account the ease of im-
plementation, robustness and time performance, these results compare favorably with the

results obtained by the corresponding upwind-based schemes.



2. A FAMILY OF HIGH-RESOLUTION CENTRAL DIFFERENCING METHODS

Many of the recently developed high-resolution schemes, which approximate the one
dimensional system of conservation laws
du 0
—_—t — u)) =0, 2.1
U ((w) (2)
are based on upwind differencing. The prototype of such upwind approximations is the
Godunov scheme [4]; it computes a piecewise constant approximate solution over cells of

width Az =z, 1 — Tj-L» which is of the form,
2 2

v(z,t) = v;(t), z;01 ST Ty (2.2)

To proceed in time, the Godunov scheme first evolves the piecewise constant solution,
7(z, 1), for a sufficiently small time step At. Initiated with 7(z, t), equation (2.1) consists
of a successive sequence of non-interacting Riemann problems. Their resulting solution at

time level t + At, can be expressed in terms of the Riemann solver, R(%wes w,),

T— Tl
s vilt), via(t)), % S TS Zie (2-3)
This solution is then projected back into the space of piecewise constant gridfunctions, see

Fig. 2-1,

v(z,t + At) = R(

_ 1 (%44
v;(t + At) = 7(z,t + At) = Z;/;’ : v(y,t + At)dy, T L <z<zi (2.4)
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Integration of (2.1) over a typical cell [zj_%,xﬁ%] X [t,t + At] yields

vi(t+ At) = v(t) + A[f(R(0%; vi-1(8),05(t)) = F(R(0%; v;(t), vjpa(t))], A = AA—;- (2.5)
This shows the upwind property of the Godunov scheme. Namely, if the characteristic
speeds throughout the relevant neighbouring cells, [xj_l,xj+1], are all positive (respec-
tively, negative), then (2.5) is simplified into vi(t + At) = vy(t) - Alf(vi(2)) - fvi-i(t))]
(respectively, v, (¢ + At) = v,(t) — Alf (visa(t) — f(v;(2))]). However, a more complex situ-
ation occurs when there is a mixture of both rightgoing and leftgoing waves. In this case,

of the wind,” i.e., to distinguish between the left- and rightgoing waves inside the Riemann
fan. The exact (or approximate) solution of the Riemann fan may be an intricate task, and
in this context, we mention the field-by-field decomposition proposed by Roe [19], which
intends to simplify this task.

Instead, in this section we propose a high resolution approximation of (2.1), which is
based on the staggered form of the Lax-Friedrichs (LxF) scheme,

et + A8 = 20; % 0501) = A F(v54(8) = 7 (us(0)]. (2.6)

The LxF scheme, [13], is a prototype of a central difference approximation, which offers

a great simplicity over the upwind Godunov scheme (2.5). We observe that (2.6) can also

be interpreted as a Piecewise constant projection of successive non-interacting Riemann
problems, which are integrated over a staggered grid, see Fig. 2-2,

_ 1 Zity T — Z]+%
viri(t + At) = 5(z, ¢ + At) = Azl R(T; VisVip)dz, z;<z< Tiy1. (2.7)
I
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The robustness of the LxF scheme, (2.7), stems from the fact that unlike the Godunov
case, here we integrate over the entire Riemann fan, taking into account both the left-
and rightgoing waves. This enables us to ignore any detailed knowledge about the exact
(or approximate) Riemann solver R(+;-,-). Unfort unately, the LxF staggered solver, (2.7),
which results in the simple recipe (2.6), suffers f-om excessive numerical viscosity, which

is evident from the viscous form (23]

vyt + At) = v;(t) = P (wnlt) = f (vj-1(t)]+
(2.8)

+1[Q 43 Avs4 (1) — Q;-1Av; 1 (0], Av, 1 (1) = vina(t) = v;(t).

Indeed, the class of upwind schemes is characterized by a numerical viscosity coefficient
matrix QE.L L )\\74_1- +%\, (here _A_j +1 refers to an approximate average of the Jacobian of
f(v(z,t)) over the cell [z, ] X[t 2+ At], e.g., '22]). By the CFL limitation, this amount
of numerical viscosity is always less than the amount of numerical viscosity present in the
central LxF scheme, whose non-staggered form corresponds to QF = I Consequently,
the upwind Godunov-like approximations have better resolution than the central LxF
approximation, though they both belong to the same class of first-order accurate schemes.
This is one of the main motivations for using upwind schemes as building blocks for the

modern shock capturing methods of higher (than first-order) resolution, e.g. [7], [17], [24].

Alternatively, our proposed method will use the simpler central LxF solver as the
building block for a family of high-resolution sc hemes. In this manner we shall retain the
LxF main advantage of simplicity: no Riemann problems are solved and hence field-by-
field decompositions are avoided. The main disadvantage of excessive numerical viscosity
will be compensated by using high-resolution MUSCL interpolants, (24], instead of the
first-order piecewise constant ones in (2.2).

To this end, at each time level we first reconstruct from (2.2) a piecewise linear ap-

proximation of the form

<z<zipg (2.9a)

=

1
Li(z,t) = v(®) + (== 2) ¥ %i-
This form retains conservation, i.e., (here the overbar denotes the [a:,-,:c,-ﬂ] - cell average),
Li(z,t) = o(z,t) = v;(t);
second-order accuracy is guaranteed if the so-called vector of numerical derivative, —Alz—v;,

which is yet to be determined, satisfies

1 o
.__...v'. = —

Ao aa:v(:z = z,,t) + O(Az). (2.9b)



Next, we continue with a second stage, similar to the construction of the central LxF
recipe: we evolve the piecewise linear interpolant, (2.9), which is governed by the solution
of successive sequences of noninteracting Generalized Riemann (GR) problems, [1], see

Fig. 2-3,

v(z,t + At) = GR(z,t + At; Lj(z,t), Lit1(z,1)), z;<z< Tjq1.

Fig. 2-3

Finally, the resulting solution is projected back into the space of staggered piecewise-

constant gridfunctions
1 Zi+1
'Uj.,.%(t + At) = D—(-'E, t+ At) = A—:l:./z v(y,t + At)dy, Iy <z< Tjt1. (210)
7

In view of the conservation law (2.1), the last integral equals

vj+§(t + At = AI-:E [‘/‘ZH% L(z, t)dz + /=;'+1 Ljyi(=, t)d:z:J
i Zi+
d (2.11)

/HAtf(v(xjH, 7))dr — /T:Atf(v(:z:j, r))d’r}.

r=¢

1
Az
The first two linear integrands on the right of (2.11), Lj(z,t) and Ljiy(z,t), are given
by (2.9a) and can be integrated exactly. Moreover, if the CFL condition

A max p(A(v(:c,t)))<%, (2.12)

Z; S22 4



is met, then the last two integrands on the righ- of (2.11), f(v(z;,7)) and f(v(z+1,7))>
are smooth functions of 7; hence they can be integrated approximately by the midpoint

rule at the expense of 0(At)? local truncation error. Thus we arrive at

1 1 At At
vy (t+ A1) = Slvi(0) + vin ()] + 5lvi — Vi) = Af(o(zinst + ) — flo(znt+ )
(2.13)
By Taylor expansion and the conservation law (2.1),
ozt + 50 = v = M (2.14)

may serve as our approximate midvalue, v(zj,t-- %), within the permissible second-order
accuracy requirement. Here, 31; f} stands for ar. approximate numerical derivative of the

flux f(v(z = z;,t)),
1

Az
which is yet to be specified.

fi= Zflolz = 33, + 0(82), (2.15)

We should emphasize that while using the central type LxF solver, we integrated over
the entire Riemann fan, see v(z,t + At) in (2.10), which consists of both the left- and
rightgoing waves. On the one hand, this enabled us to ignore any detailed knowledge about
the exact (or approximate) generalized Riemann solver GR(;-,-); on the other hand, this

enables us to accurately compute the numerical flux, A

A% f(v(z,7))dr, whose values are

extracted from the smooth interface of two nor-interacting Riemann problems.

In summary, our family of central differencing schemes takes the easily implemented

predictor-corrector form,

oyt + 925) — ut) - %,\ A (2.160)

vypy(tHAl) = glv,-(t)+vj+l(t)1+-;—{v;-—vg-ﬂl—A[f(v,-+1(t+%f)—f(v,-(wf‘z—t-)n. (2.165)

Here the numerical derivatives of both gridfunctions, {v;} and {f;}, should obey the ac-
curacy constraints (2.9b) and (2.15). In this manner the second-order accurate corrector
step (2.16b), augments the first-order accurate predictor step (2.16a), and results in a high-

resolution second-order central difference approximation of (2.1).

Remarks:

1. The choice -Al;v;- = KlZf; = 0 in (2.186), racovers the original first-order accurate LxF
scheme (2.6).



2. If instead of (2.6) we use the non-staggered version of the LxF scheme,

vt A8 = Slosa(8) + 0501(8)] = S (v501(6)) — Fosea(8))], (2.17)

SRR

and repeat the reconstruction, evolution and projection steps described above, then

the resulting high resolution central differencing approximation amounts to

vt + 55 = o,f0) - A (2.184)
i(t+A) = %{v,-ﬂ(t)+v,-_1<t)1+i[v;--rv;-ﬂl-gff(v,-ﬂ(w%)—f(vj-l(t+%)1- (2:15)

To guarantee the desired nonoscillatory property of these approximations, the two free
ingredients at our disposal — the numerical derivatives -Al—zv;- and Al—z 7, should be carefully

chosen. This issue will be discussed in the next two sections.

3. THE SCALAR PROBLEM

In this section, we are concerned with non-oscillatory high- resolution central differenc-

ing approximations of the scalar conservation law

et Z(rw) =o. (3.1)
Our family of high-resolution central differencing schemes (2.16) can be rewritten in the
form
Vg (t+ A1) = Zos(t) + vy1a(6)] — Mgges — g5 (3.20)
where the so-called modified numerical flux, g;, [18], is given by
6= Fuslt+ S+ Su et 3 =%l - Iag. (3.28)

Here, Zl—zv; is an approximate slope at the grid point z;,
1, 7]
Al = %-v(a: = zj,t) + O(Azx), (3.3a)

and Al—zf;- is the numerical derivative of the gridfunction {f;},

1 I 6 —
A—:z:fj = a—xf(v(x = z;,t)) + O(Az). (3.30)

The constraints (3.3) with smooth (= Lipschitz continuous) first order perturbations on

their right, guarantee the second-order accuracy of the central differencing schemes (3.2).

8



In order to ensure that these schemes are also non-oscillatory in the sense to be described

below, our numerical derivatives, A—‘;w;-, should satisfy for every gridfunction w = {w;},
0< wj- sgn(Avii%) < Const. - |MinMod{Aw;, 1, ij_%}\. (3.4a)
Here, the MinMod{:,"} stands for the usual limiter,
MM{z,y} = MinMod{z,y} = %[sgn(z) + sgn(y)]- Min(zl.lyl),  (3.40)

and can be similarly extended to include more ‘than two) variables. The constraint (3.4)
is required in order to guarantee the Total Variation Diminishing (TVD) property for the
family of central differencing schemes (3.2). We recall that TVD is a desirable property
in the current setup, for it implies no spurious oscillations in our approximate solution
v(z,t), [7].

However, it is well known, e.g. (7], (18], that one cannot satisfy both the accuracy
requirement, (3.3), and the TVD requirement, (3.4), at the non-sonic critical gridvalues,
vj, where Av;, 3 Avj_% < 0 # a(vj). Therefore, the second-order accuracy requirement,
(3.3), must be given up at these critical gridvalues. Difference schemes with (formal)
second order of accuracy at all but these critical gridvalues may be classified as having
second order resolution in the sense that the local truncation error is almost everywhere
O(Az)s, and the overall second-order accuracy does not seem to be degraded in such cases,
at least in the L!-norm.

We shall verify the TVD property of the central differencing schemes, (3.2), with the help
of

Lemma 3.1: The scheme (3.2a) is TVD, if its modified numerical fluz, g;, satisfies
the following generalized CFL condition,

Agi.r 1
M'——J'il < 5: Ag,‘+% = gj+1 — §j- (3.5)

Indeed, by (3.2a), the difference vips(t+ At) - v;_s(t+ At) equals

1 Agjii 1 Agj s
viep(t+ A1) — vy g (t+ 88 = Avspy (5 - A———Av”l) + v+ A—__Avj_L)'
2 2

Condition (3.5) tells us that the terms inside the parenthesis are positive and TVD follows
along the lines of {7,

TV (v(t + At)) = 2 v 1t + A8) = v,1(t+ ALY STV (v(t))- (3.6)

9



Equipped with lemma 3.1 we turn to
Ui and Z-f1 in (8.8) be chosen such

Theorem 3.2: Let the numerical derivatives Az

that the TVD requirement (8.4) holds, say,

0< v - sgn(Avji%) < Const, - IMM{AvH_x yAv;_1}], Const, = a, (3.7a)
0 < f;-sgn(Av;yy) < Consty - IMM{AT’H;,A‘U,'_;H- (3.7b)

Assume that the following CFL condition is satisfied

g=agonsts o (it da—a?-2). (3.8)

Const,

A- m?.xla(vj)l <8,

Then the family of high-resolution central differencing schemes (3.2), (3.8) is TVD

Proof: By (3.2b) we have:

’\lA 2|<A| (vj+l(t+%))_f(vj(t+%))l+l.lAv;+%ls
AUJ+1 Av]-+% 8 A‘UJ-_,_%
(3.9)
fosa(t+ 5Y) — f(vi(t + 5Y)) B Ivf+1(t+ At —v;(t+ 4§ | llAv;+’l
A‘U-+L 8 Avj+1

vira(t+ §F) —vi(t + §)
Our CFL condition (3.8) implies that the first term on the right of (3.9)

does not exceed

v (t + &) — f(v;(t + At

Alf( J+1( 12) f( J( = 2 ))I < ﬁ- (310)
vira(t + 5F) — v;(t + §Y)

we can estimate the second term on the right of

Using the midvalue v;(t + 4) in (3.2b),

(3.9),
vi1(t + 4E) — vi(t + &Y A Afa
| = 2A‘U'+IJ ; ISI+EIA‘UJ-+:" Af'+l - .‘;"‘1_ J'" (3'11‘1)
Itz Itz
where in view of (3.7b) and (3.8),
(3.115)

A ' fl ' 1
_ﬁ < i+l < b, < =
IA'UJ+1 | < max (IA ™ Av”x |) < Consty < Aaﬁ.

Finally, the TVD requirement, (3.7a), gives us an upper bound for the third term on the

right of (3.9),
Av' ! !
i< Ys Vit1 y <
’AUJ+1 | max(]AvHL l, X ) <e. (3.12)

10



Using (3.10), (3.11) and (3.12), we find that (3.9) boils down to the quadratic inequality

1 1 1
1+ -af)+ za <5,
B( +2aﬁ)—\ 22< 3
whose solution yields the CFL limitation (3.8).

Remarks:
1. The values a which permit a positive solution of (3.8), 8 > 0, are 0<a<4.

9. The TVD constraints (3.7) with a = 0 yields v = f; = 6 which recovers the
staggered LxF scheme (2.6) with the corresponding CFL condition 8 < %

3. The CFL restriction (3.5) is 2 sufficient but not necessary condition for the TVD

property. In practice one may use higher values of 3, up to g < ,1—,

4. A similar analysis carried out for the non-staggered form, (2.18), yields
1 -
B < &-(\/Z+4a—a2—2)
instead of (3.8). In practice one may use B <1 in this case.

We shall now discuss a few examples of numerical derivatives, which retain both the
second order resolution constraint, (3.3), and the TVD constraints, (3.7). As our first

example for the numerical derivative, v;, we choose

vy = MM{Avj,y Av;_1}. (3.13a)

i+

This choice may oversmear a strong «discontinuity”, where the order of accuracy is less
significant. A preferable second choice, which allows for a steeper slope near such discon-

tinuities and yet retains higher accuracy in smooth regions, is given by

1,
v; = MM{aAvj, 1, E\Uj-{—l — vj-1), aAv-_%}. (3.13b)

The limiting parameter o can range between the values o = 1, which corresponds to
the basic MinMod limiter in (3.13a), and 1p to a < 4, which is permitted by the CFL

condition (3.8). Similarly, the flux numerical derivative may be chosen as
fi = MM{A ;13 0f53h (3.140)
which is a special case of

£ = MM{ab fjrp0 5 = f-1) a8 fi-gh (3.140)

11



A simpler alternative for (3.14) is given by
1= a(v;)o, (3.15)

where v} is already computed by (3.13). We observe that this choice saves half the com-
putation time of the MinMod operation; yet, it requires the computation of the Jacobian,
A(v;), when dealing with systems of conservation laws.

The numerical derivative chosen in (3.13a), (3.14a) satisfies (3.7) with & = 1, which
implies the TVD property under the CFL limitation (3.8) with g8 = %(\/7— 2) =~ 0.32.

The numerical derivative chosen in (3.13b), (3.14b) clearly satisfies (3.7) and conse-
quently the TVD property, for every permissible @, 0 < a < 4. We summarize the above
by stating

Corollary 3.3: Let the numerical dertvative Al—zv;- be chosen by
v; = MM{AvH%, Av;_1}; (3.16a)
let the fluz numerical derivative be chosen either by
fi = alv,)v}, (3.165)

or

fj = MM{Af,1,Af, ). (3.16¢)

Then the family of high resolution central differencing schemes (3.2), (8.16) is TVD under
the CFL condition

A -maz;la(v;)| < B, B = %(\/'7— 2) ~ 0.32.
Similarily we have
Corollary 3.4: Let the numerical derfvative Al—zv; be chosen by
v; = MM{ZAvH%, ;T(v,'ﬂ - vj_1), 28v; 4} (3.17q)
let the fluz numerical derivative be chosen either by
f; = a(v;)vl, (3.175)

or
1= MM(28 1,04, (fi - f1-1),247,_.). (3.17¢)

2

12



Then the family of high resolution central differencing schemes (8.2), (3.17) is TVD, under
the CFL condition,

\-mazla(v)| < B B= -;-(\/E— 1) = 0.21.

Remarks:

1. We note that the CFL limitations in Corollaries 3.3 and 3.4 are not sharp. In the
first case, (3.16), where a limiter parameter a = 1 was used, the reconstruction step
is a TVD operation; replacing the exact TVD evolution operator by the midpoint
rule in (2.11) together with the final averaging step is also TVD, under the CFL
limitation g < % Similarly, one can argue that in the second case, (3.17), where
a limiter parameter o = 2 was used, the averaging step retains the TVD property
(though not necessarily the entropy condition), as long as the CFL condition 8 < %
is met. Indeed, this CFL condition was verified as the stabilitiy limitation, by the

numerical experiments reported in Section 5.

2. Recently, non-oscillatory schemes were constructed, such that by sacrificing the TVD
property, they achieve higher (than second-order) resolution including the critical
gridvalues, e.g., the UNO scheme in [12] and the ENO class of approximations in
[9]. To implement such ideas within our “ramework, one can borrow their definition
of numerical derivative. For example, ins tead of the TVD choices (3.4), our central
differencing scheme (3.2) may be augmented by the UNO choice (here A%v; = vjy1—
2v; + vj-1),

1 1
vy = MM{Av;_ + EMM(A’v,-_l, A%vj), Avy s — EMM(sz,-, A’viq)}. (3.18)

j+§

Theorem 3.2 and its corollaries 3.3 and 3.4 demonstrate high- resolution central differ-
encing methods which satisfy the non- oscillatcry TVD property, and hence are convergent
to a limit solution u(z,t). To guarantee that this limit solution is the unique entropy so-
lution of the scalar conservation law (3.1), we shall appeal to the following cell entropy

inequality, see [10],
1
U(vje3(t+ 88) < 5[Uv;) + U(vjs1)) — MGis1 — Gil- (3.19)

Here U (u) is a convex entropy function and G; = G(vj+1, Vs vj-1) is the numerical entropy

flux which is consistent with the correspondir g differential one

G(u,u,u) = F(u), F(u)= /u (W)U’ (u)-

13



We recall that Lax has verified such cell entropy inequality for the LxF scheme, [14].

Following Lax, we will continuously deform vj into v,44,
v(s) = sv; + (1 - s)vjy1, v(0) = vi+1,v(1) = vj, (3.20a)
and in a similar manner, we will further deform v(s) into v;y,,
v(r,8) = ru(s) + (1 — r)vjs1,  v(0,s) = vi+1,9(1,8) = v(s). (3.208)
In the Appendix we prove

Lemma 3.5: Let g(v) be a precewsse differentiable interpolant of the gridfunction {9;}.
Then the following identity holds,

Ulvy 3t + AY)) = %{U(vm) +U(v;)] = A / U 0)g! (v)dv — R, (o(v).  (3.21)

L
2

Here the residual term, R, 1 (g) = RY 1(9(v)), is given by,
2

Rﬂ;ww»:(Aw%vjfﬁlvwwnﬂ)4§—aﬂwnsnw§+xdw@»uwn(&n)
Adding and subtracting

/u"m U'u) f'(u)du = F(vj41) — F(vy),

J

then after integration by parts, the right hand side of (3.21) will amount to:
1 )
Uvj1(t + A2) = 5V Win1) + U (v5)] = A[F(v;41) — F(v,)] = AU'(0) - (9(v) = f(v))i+

[ U"0) - (o) - 7))o - R, (g(0))

Consequently, the inequality
Yitt o, v
ATM0) - (00) - 1))y - R (o) <, (3.23)

provides us with a sufficient condition for the family of central differencing schemes (3.2)
to satisfy the cell entropy inequality, (3.19), with numerical entropy flux G; = F(v;) +
U'(v;) - (¢(vs) — f(v;)). This brings us to

Lemma 3.6: Let g(v) be the piecewrse linear interpolant of the modified fluz gridfunc-
tion {g;},

Agi+§ .
g(v) = —=(v—v;) + g5 min(vj,v;4,) < v < max(v;, Vit1). (3.24)

s 1
Itz
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Assume that the central differencing schemes ($.2), satisfy the TVD constraint (consult
(3.7)),

0< v} sgn(Avji,%) < Const, - \MM{Av;T_F_,., AU;-L_;}‘: Const, = a <1, (3.25a)
bl 2

where

Avl = Dvje [1—X- (max f"(v(z)) - Avj+%)+]+. (3.25b)

i+
The entropy dissipative limiter in (8.25b), is intrcduced in order to prevent the nonerpansive
entropy violating rarefactions, consult [18, Section 8/.

Moreover, assume that the fluz numerical derivative satisfies the TVD constraint:

Consty _
0< f}-sgn(Av,z1) < Consty- \MM{AvH%,Avj_%}], * Gomots = B, (3.25¢)
so that the CFL condition (8.8) holds.
Then the following tnequality holds
U 41 1
A [ (6) - S~ BN <0 U = Sul. (3.26)

i
Remarks:

1. We observe that in the Genuinely Non-Linear (GNL) case, where, say, f" > 0, the
entropy entropy (3.25b) becomes effective only in rarefaction cells where AvH% > 0,
in agreement with [18]. It retains the second-order resolution of the central differ-
encing schemes (3.2), except for a finite number of critical cells which contain strong

rarefactions, (Avj+%)+ ~ 1, where it reduces (3.2), (3.3) to the original LxF scheme.

2. Lemma 3.6 applies to choices of numerical derivatives, v}, subject to the TVD con-

straint (3.7a) with 0 < « < 1. In practice, higher values, a > 1, can be used.
Lemma 3.6 - which is proved in the append'x, shows that our central differencing TVD

schemes (3.2), (3.7) fulfill the sufficient condition (3.23) and consequently the cell entropy
inequality (3.19), with respect to the quadrat'c entropy function U(u) = 3u®. Thus, the
limit solution of our central TVD schemes, u(=,t), satisfies

0,1 a u

2 (3 + g (F) S0, F(w)= / wf'(u)du.
This singles out u(z,t) as the unique entropy solution of (3.1), at least in the GNL case
[2]. We have shown

Theorem 3.7: Consider the GNL scalar conservation law (8.1). It 1s approzimated
by the family of high resolution central differencing schemes (8.2), (3.3) which satisfy the
TVD and entropy constraints, (8.25). Then, if the CFL condition (8.8) holds, we have:

1&



1. Second-order resolution;
2. Total Variation Diminishing property;

3. A consistent quadratic cell-entropy inequality;

and, as a consequence of 2. and 3.:

4. the corresponding central differencing schemes converge to the unique physically rel-
evant solution of the GNL conservation law (8.1).

We shall close this section with some scalar numerical examples. We consider the

approximate solution of the inviscid Burger’s equation

1
ug + (Eui’)z = 0. (3.27)

using several of the previously mentioned central differencing schemes. They include:
1. The first-order LxF scheme in its non-staggered form (2.17).

2. The second-order non-oscillatory central differencing scheme (2.18), (3.13a), (3.15).
This is the ordinary non-staggered version of our central differencing which will be
referred to as ORD.

3. The second-order non-oscillatory central differencing scheme (3.2), (3.13a), (3.15).
This is the staggered version of our central differencing which will be referred to as
STG.

Equation (3.27) is solved with two sets of initial conditions. In the first case, we have the

smooth 1-periodic initial data,

u(z,0) = sin(rz); (3.28q)
in the second case we consider the Rieman initial data:
1 2z<0
u(z,0) = { 0 z2>0. (3.28b)

The well known solution of (3.27), (3.28a), e.g. [15], develops a shock discontinuity at
tc ~ 0.31. Table 3.1 shows us the Ly norm of the errors at the pre-shock time ¢ = 0.15.
It indicates the first order accuracy of the LxF scheme in contrast to the second order
accuracy of our central differencing, ORD and STG.

Next, in Table 3.2 we recorded the same L, errors at the post-shock time ¢ = 0.4. The
presence of a shock discontinuity reduces the global L, error to first order. However, the

16



central differencing STG scheme performs somewhat better than the central differencing
ORD scheme and they both have better resolution than the first-order LxF scheme in
shock-free zones.

This behavior is amplified in the second case of solving the Rieman problem (3.27),
(3.28Db), see table 3.3 and Fig. 3.1. Once more, we observe that the STG scheme has
somewhat better resolution then its non-staggered counterpart ORD. Yet, the CFL lim-
itation in the non-staggered form, 8 <1, results in a better time preformance than the
STG scheme which is subject to the CFL limitation 8 < % In either case, these easily

implemented non-oscillatory central differencing outperform the first-order LxF one.

17



Table 3.1: L; norm of the errors, Burger Equation, u(z,0) = sin(rz), t = 0.15.

Rel. STG Rel. ORD Rel. LxF NX

.000859 .002620 023702 40
3.70 3.92 1.93

.000232 .000667 .012249 80
3.80 3.94 1.96

.000061 .000169 .006246 160
3.81 3.93 1.97

.000016 .000043 .003158 320

Table 3.2: L, norm of the errors, Burger Equation, u(z,0) = sin(rz), t = 0.4.

Rel. STG Rel. ORD Rel. LxF NX

.000849 .003612 .044449 40
3.06 2.79 1.89

.000277 .001291 .023486 80
2.82 2.59 2.06

.000098 .000498 .011383 160
2.57 2.38 2.17

.000038 .000209 .005235 320

Table 3.3: L; norm of the errors, Burger Equation, u(z,0) given in (3.28b), ¢t = 0.3.

Rel. STG Rel. ORD Rel. LxF NX

.010921 .014044 021956 50
1.99 1.99 1.94

.005461 .007027 011315 100
2.00 2.00 1.99

.002730 .003513 .005685 200
2.14 2.00 1.99

.001274 .001756 .002843 400
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4. SYSTEMS OF CONSERVATION LAWS

In this section, we describe how to extend our scalar family of central differencing

schemes to the one-dimensional system of conservation laws,

du 9
o5 T3z (fw) =0 (4.1)

Here u(z,t) is the unknown N-vector of the form
u = (ui(z,t),us(z, t),. .., un(z, )7,

and f(u) is the flux vector,

f(u) = (fl(u)) f2(u)’ caey fN(u))Ts
with an N x N Jacobian matrix,
af,

Apg(ur,...,uy) = (El.—) p,¢g=1,...,N.
q

Our approximate solution at the gridpoint z; is given by the N-vector

‘!)J' = (vj,ls ‘Uj,z, ey ‘Uj‘N)T,

and the corresponding vector of differences, Av,, L = Vj41 — vj, consists of N-components
denoted by Avj+al_'k = Vit1k — Vjk

Equipped with these notations, our family of high-resolution central differencing schemes
(3.2), (3.3), takes the form,

Uis3(t+ A8 = Z{0s(8) + i1 (8)] ~ Mgsea - g5, (420)

where the modified numerical flux, g;, is given by

At 1 At 1
95 = f(vi(t+ ) + 5o wile + =) = vilt) = 32/ (4.20)

As before, the computation of g; and v;(t + %) requires the numerical derivatives of the
gridfunctions {v;} and {f;}. This time we have to choose two N-vectors of numerical

derivatives,
1
—A_:l:v; = (v;',la v_;',m Tty v",N)Ts (43(1)
1
—A—xf’l = (f",ls _1{,2)"'af;,N)T- (43b)

In the rest of this section, we shall describe the pros and cons of several choices for these

vectors of numerical derivatives.
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Our first choice is a component-wise extension of the scalar definition in Section 3. To

this end we may use either (4.4a),

= MM{AUH%,,‘,AvJ-_%'k}, k=1,...,N, (4.4a)
or the more general (4.4b),
— MM{aBvj 1 ;(v,-ﬂ,,, Cvjan), @bdvpsh k=Ll (4.4b)
or instead, use the UNO-like numerical derivative in (3.18),
= MM{ Avj_ i+ MM(szj_l,j;szj’k),
(4.4¢c)

Avj'f';'»k - %MM(AZvJ',k’ szj‘fl,k)}’ k=1,..., N.

A possible choice for the vector of numerical flux derivative may be

fi = Alvs)vj- (4.5)

ThlS approach involves multiplication of the Jacobian matrix by the vector of derivatives,
. This multiplication may be avoided if we use a component-wise definition for the vector

of nurnencal flux derivatives, fj, In analogy to (3. 14). For example, we may use

fj,k = MM{Afj;; Lk Afj_;_,k} (4.6a)
or alternatively,

fix= = MM{aAf; 10 Z(f”lk fi-1k)s 0Df; _;k} (4.6b)

We observe that the Jacobian Free Form (JFF), (4.4), (4.6) avoids the use of the Jacobian
matrix A(v) required by (4.4), (4.5), at the expense of carrying out the MinMod operation
twice.

The resulting central differencing schemes, (4.2), which are based upon the component-
wise definition of the numerical derivatives in (4. 4)-(4.6), share the simplicity of the scalar
framework. Namely, no Riemann problems are solved and consequently characteristic
decomposmons—requlred in order to distingu ish between the left and rightgoing waves
inside the Riemann fan, are avoided. At the same time, our central differencing approach
is flexible enough so that it enables us to incor porate characteristic information, whenever
available, in order to achieve improved resolution.

Our next choice shows how to incorporate the characteristic information into the
definition of the numerical derivatives. To this end we shall employ a Roe Matrix,

.:11+x = A(vj,vj+1)s namely, an averaged Jacobian, ‘:11+§’ satisfying, e.g. (11], [19),

floger) = F03) = Ajey - (Vin = v5)s (4.7)
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and having complete rea] eigensystem {4

iehe Bipiah k=1,
vector of differences Av,, 1 onto {R;
2

..y N. Let us project the
+%}, i.e. we use the charact

eristic decomposition

A”H% = Z&ﬂ%,k Riie k=1,...,N, (4.84)
k
where
&j-f-%,k = Lj+zl,k . A‘Uj_*,%, Lj " Rj = 6,'1', k = 1, ey N (48b)
Then the corresponding projection of the flux vector of differences is given by
Afjey = Ek: T NITENN I (4.9)

Now, a possible characteristic

-wise choice for the numerical derivatives in analogy with
(4.4), may be (here R;

.k is denotes the averaged eigenvector centered at z = g;),
' - - ~
Vi, = ZMM{a_H%',C, &, 14}R;, (4.10)
k
and the numerical flux derivatives can be calculated as

Once again we can use the JFF and avoid t

he multiplication of Roe’s matrix by the vector
of numerical derivatives, if instead of (4.11

) we employ, consult (4.9),

I — A -~ A A - .
k=D ) MM{aJ'+§,kaj+§,ka a;_ %,kaj—;-,k}R ke
k

(4.12)
As an example, let us consider the Euler equations,
al°’ o™ 1
ET R Rl =0, p=(y-1)-(E- 5,ouz). (4.13)
E u(E + p)

Here p,u,m = pu,p and FE are respectively the density,

total energy. The correspondin

momentum, pressure and
g Roe matrix, A(vy,
{aj+§.k’ R

Y;+1), is associated with the eigensystem
j+%,k}, where the eigenvalues 14k are given by

velocity,

-~

Tirda = Ujpy — Ci+dr Gjp1q = YUitdr Gji1g= i+ T Gl (4.14)
and the right eigenvectors are given by
1 1 1
— Ae ) _iz . A~ .
H—14 jol 3 +h H + ¢ jed



The average quantities on the right of (4.14)-(4.15) given in [19] are,

> . <. pH> .1 E.: .
s SR> g SVPH> o g -, =2l (419
< P> < P> 2 P;

where < w >= 1(w; + w;41) denotes the usual arithmetic mean. This brings us to the
characteristic decomposition (4.8), where the characteristic projections,

. 1 R . 1
Oipil = 5(’71 —M2)y  Gyla = Pipl ML OGip3 T 5(771 + 72), (4.17a)

2'
are expressed in terms of 71,72, which are given by

- 1, . . . .
m=(n-1)- (Ej+§ + —2-pj+§_u§-+%—— uj+%m,-+%)/c§+%, (4.17b)

~

e = (Myps = Pivalint) /841 (4.17¢)
We note that the second contact field associated with Rj +12 is independent of the
square root which is required only in the computation of the mean value sound speed
i 1. Since this field is a linearly degenerate, it lacks the strong entropy enforcement
typical to the other two genuinely non-linear field, and therefore, is usually smeared by
numerical schemes. In our next choice of numerical derivatives, we incorporate only partial
characteristic information. Namely, we isola-e the less expensive (i.e., square root-free)
characteristic projection on the contact field, and use the component-wise approach for
the other two fields.

Thus, we first separate the contact field,

Apjvy Apjyy 1
A’f‘j+§ = | Amyr | — G- ?’.z , (4.18)
AEJ»+% AE]'+;_ P itz
and then define the vector of numerical derivative as
P; 1 Apj-{—%’ApJ—-
m,’j = MM{&,‘+§,2’ &J-_%} < ?72 - MM ATIIH%,Atn,-_% (4.19)

Similarly, computing the numerical flux derivative with a characteristic approach applied

only to the isolated contact wave,

Afjea Afirin 1
Afjrga | = | Bivga | = %12 Bjppa | B : (4.20)
Afi+%,3 Afirys 2% Jjet
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amounts to

i1 1 AfivsnBfi_ 1,

i | = MM(&H%#E’H%'?’ & %-2‘3'-%'2) s ? i - MM Af:'+%.z’ Afj—%,z

! 12 ~ ~

73 < ut> i Afj+§,3’ Afj—%,s
(4.21)

The latter approach enables us to use effectively the Artificial Compression Method
(ACM) on the isolated contact field, e.g. [6], [7]. To this end, the contact wave isolated in
(4.19) is modified by

P 1 A;ij+§-’ Aﬁ{—%

m; = [MM{&J-_’_%,Z,&-_%’-‘,} + 0]'7']'] . ‘l;t , — MM Atnj-"%’ Atnj-% ) (4220)
! ~

EJ' E’u Fi AEJ"'%’ AEJ—%

where 6; and r; are given by

_ ,&j+§,z —&;_ ;,z,

6, = — £ , 4.22b
" Tegal Ty 220

1 . 1 o,
r,-=MM{§(1——/\uJ-+%) 8y, E(l—z\uj_%) -aj__;_,z}. (4.22¢)

Finally, we shall mention an alternative approach to the characteristic implementation
of the ACM in (4.22). To this end, the Artificial Compression is implemented as a further
corrector step to the component-wise approach presented in (4.2a)-(4.2b). This corrective
type ACM takes the form,

vi(t+ At) = v(t + At) - e(WH% ~W; 1), 0<e<l. (4.23a)

Here, the compression coefficient, €, and W; are given by

[ w,, AwH% . AvH% > 0,
Wis =1 w; = MM{Av,_y,vps, Avy, 1), (4.235)
[ Wi+, AwH% . A”j+§ <0,

where vgy is related to subcell resolution information (Harten, private communication,

(8]),

VrL = [V (t+AL) —v;_ 1 (t+Al) —Az,

7

8j+1 +5j_1),, b; = MM{A'UJ-_%,A‘UH_%}. (4.236)

The result is the central differencing scheme (4.2), appended by the component-wise
definitions of numerical derivatives in (4.10) - (4.12), and complemented by the ACM
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corrector step (4.23). This scheme, unlike the characteristic-wise implementation of the
ACM in (4.22), enjoys the simplicity of the component-wise approach, and at the same
time, enables us to deal effectively with the delicate contact wave. We remark that one
should be careful not to overcompress discontinuities using such corrective type Artificial
Compression: it should be implemented after the rarefaction waves have evolved using an

appropriately chosen compression coefficient e.

5. NUMERICAL EXAMPLES

In this section, we will present numerical examples which demonstrate the performance
of our family of high resolution central differencing schemes for systems of conservation

laws. We consider the approximate solution of the Euler equations of gasdynamics, see

section 4,
al’ . , 1,
31 m +—a-— pu =0, p=g’7—1)-(E—§pu), m = pu. (5.1)
E T w(E+0)

We experiment with the following members from our family of high- resolution central

differencing schemes:

1. The central differencing scheme (4.2), (4.4a), (4.5). This is the component-wise
extension of the scalar STG scheme presented in Section 3 and is therefore referred

to by the same abbreviation.

2. The central differencing scheme (4.2), (4.4b), (4.5) with a limiter value a = 2. This

scheme is referred to as STG2.

3. The component-wise UNO-type version of our scheme, (4.2), (4.4c), (4.5). It is
referred to as STGU.

4. The scheme STG with the addition of the corrective type ACM described by (4.23)
is referred to as STGC.

All the above examples use component-wise definitions for the vectors of numerical
derivatives, and are based on the staggered grid formulation. Our last example is

based on non-staggered LxF scheme, naraely,

5. The central differencing scheme (2.18), (4.4a), (4.5). This is the component-wise
extension of the scalar ORD scheme presented in section 3 and is therefore referred

to by the same abbreviation.
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For the purpose of performance comparison we include here the results of several well

known upwind and central schemes as well. These schemes include:

1. The first order central non-staggered LxF scheme, (2.17), [13].
2. The first order accurate Godunov-type scheme of Roe, e.g. [7].
3. Harten’s second order accurate upwind ULT1 scheme, [7].

4. Harten’s second order accurate upwind ULT1C scheme, [7], where Artificial Com-
pression is added to ULT1 in the linearily degenerate contact field. It is referred to
as ULTC.

We solve the system (5.1) with three sets of initial conditions. Our first example is the
Riemann problem proposed by Sod [21] (abbreviated hereafter as RIM1), which consists

of initial data
vy, <0, ve=(1,0,2.5)7

v(z,0) = { v, >0, v, =(0.125,0,0.25)T.
Table 5.1 shows the L; norm of the errors. Though the results are field dependent, the

(5.2)

“quantitative picture” is favourable with the central differencing schemes. Table 5.2 shows
the time performance of the various schemes. All the schemes have time performances
of order O(NX)?, where NX is the number of spatial cells. Figures 5.1-5.4 include a
comparison between the numerical solution and the exact solution (shown by the solid
line), e.g. (3], [20], at ¢t = 0.1644. As expected, the overall resolution of the first order
schemes is outperformed by the second order schemes.

We observe that our second order staggered schemes, STG, STG2, and STGU, and
similarily, the second order upwind ULT1 scheme, smear the shock discontinuity over two
cells. The contact discontinuity, however, is more delicate: here we observe smearing of
about 5-6 cells by the second order schemes, both in the central and upwind cases. We can
also observe the over- and undershoots generated by both the upwind ULT1 and central
ORD. These unsatisfactory results suggest to introduce ACM in the contact field. For
this purpose we present the upwind ULTC scheme and the central component-wise STGC
scheme in Fig. 5.4. We note that the ACM is applied in STGC only at the last 10% of the
time steps with the compression coefficient € = 0.625. This results in 2 cells resolution of
the contact wave, and somewhat better resolution in the other waves as well. Yet, small

over- and undershoots which are due to overcompression, still remain.

Our second Riemann test problem (abbreviated hereafter as RIM2), is the one proposed
by Lax [5]. It is initiated with,

ve = (0.445,0.311,8.928)7, v, = (0.5,0,1.4275)7, (5.3)
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and the results at ¢ = 0.16 can be found in Fig. 5.5 -5.8. The density profile in RIM2 lacks
the monotonicity we had in RIM]1, and therefore, it is more difficult for “non-oscillatory”
numerical schemes to recover the contact wave and the intermediate “plateau” which
follows. Consequently, the upwind schemes perform here somewhat better than the central
schemes: ULTC resolution is better than STGC which has more over- and undershoots
than before. We note that STG2 has better resolution and L, errors than STGU in all
fields. This is due to the fact that STG2 has steeper slope near discontinuities, consult
Section 2.

Finally, the results of the nonstaggered central difference scheme ORD for both RIM1
and RIM2 problems are presented in Figure 5.0. We recall that the CFL limitation in
the staggered case, 8 < %, is now doubled to be 8 < 1, consult Section 3. Moreover, a
component-wise reconstruction of the vector of numerical derivatives, enabled us to avoid
any Riemann solver in this nonstaggered case. Consequently, the ORD scheme is twice
faster than the staggered central versions based on STG, as well as the upwind scheme
ULT1 which necessitates the (approximate) solution of a Riemann problem at each cell.
However, the resolution of this nonstaggered version, ORD, deteriorates, when compared

to the staggered versions and the upwind methods.

Our third problem, discussed by Woodward-Collela in {25], consists of initial-data,

v, 0<z<0l,
u(z,0) = { vm 01<z <09, (5.4)
v, 09<z<1,

where py = pm = pr =1, TU = My = Mr = 0, pe = 100, pm = 0.01, pr = 100. A solid wall
boundary conditions (reflection) is applied to both ends. The results are compared with
the fourth order ENO scheme [9], in Fig. 5.10-5.12.2 The continous line is the result of
the ENO scheme with 800 cells. We present the results of STG2 and ULT1 with 400 cells
in Fig. 5.13-5.15 at ¢t = 0.01, ¢t = 0.03, and ¢t = 0.038 respectively. We observe that the
upgrade from the first order LxF scheme to the second order STG2, results in a substantial
improvement of resolution, see Fig. 5.10-5.15; moreover, STG2 compares favourably with
the second order upwind ULT1 scheme.

In summary, we may conclude that when strong discontinuities are present, STG2 seems
to offer the best results, STGC can be tuned to obtain sharp resolution at the expense
of overcompression, and ORD version wes found to be the most economical. Further

extensive numerical experiments done alor g these lines are reported in [16].

2We thank A. Harten for allowing us to use his ENO results in [9].
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Table 5.1: Computation time of Riemann problems, results at ¢ = 1.0.

ULT1/C STG ROE ORD LxF STGC STGU STG2 NX

RIM1
1.23 1.23 0.74 0.69 0.22 1.43 1.47 1.37 50
4.93 4.75 2.92 2.71 0.85 5.67 5.88 5.43 100
19.81 19.32 11.68 10.71 3.37 22.74 23.49 21.66 200
RIM?2
2.87 2.74 1.72 1.55 0.48 3.24 3.35 3.07 50
11.54 10.93 6.83 6.16 1.90 12.88 13.30 12.22 100
46.34 43.50 27.27 24.40 17.52 51.46 53.20 48.83 200
Remarks:

1. Due to our method of implementation, ULT1 and ULTC have the same computation
time. In fact ULT1 is somewhat faster then ULTC.

2. All the above schemes use a CFL number of 0.95, except for the versions, STG*,
which use a CFL number of 0.475.
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Table 5.2: Riemann problems, L; norm errors.

Density Velocity Pressure
Nx 50 100 200 50 100 200 50 100 200
Scheme Rieman Problem - RIM1, t = 0.1644
LxF 03121 .02460 .01769 .06651 .04583 02814 .03602 .02458 .01582

ROE 01918 .01308 .00836 .03224 .02090 .01145 01762 .01109 .00666
ORD 01868 .01026 .00578 .03315 .01807 .00959 .01630 .00861 .00460
STG 01495 .00741 .00409 .02812 .01105 .00550 .01232 .00581 .00294
ULT1 01338 .00806 .00437 .02933 .01177 .00820 01285 .00736 .00362
STG2 01241 .00619 .00297 .02449 .01132 .00494 .01019 .00487 .00228
STGU .01146 .00544 .00291 .02300 .00816 .00403 .00961 .00432 .00216
STGC .00982 .00322 .00172 .01994 .00481 00276 .00705 .00270 .00153
ULTC .01269 .00715 .00361 .02923 .01761 ,00804 .01283 .00735 .00362

Rieman Problem - RIM2, t = 0.16

LxF 12162 .09044 .06165 .13523 .09294 .05557 .15860 10767 .06537
ROE 06630 .04334 .02827 .07397 .04144 .02192 .08399 .04826 .02655
ORD 06791 .03824 .02231 .07158 .03623 .01709 .07836 .04056 .01995
STG 04972 .02903 .01776 .04392 .02416 .01307 .05118 .02669 .01426
ULT1 04518 .03572 .01477 .05570 .02603 .01094 .06075 .02841 .01206
STG2 03473 .02129 .01151 .03369 .01655 .00849 .03956 .02037 .00988
STGU .03668 .02152 .01302 .03323 .01657 .01046 .03907 .02031 .01121
STGC .02764 .01291 .00647 .02285 .01356 .00836 .02355 .01409 .00873
ULTC .03001 .01566 ,00872 .05504 .02545 .01074 .05997 .02784 .01183

Remarks:

1. All the above schemes use CFL number of 0.95, except for the staggered versions,
STG*, which use a CFL number of 0.475.

2. The underlined results indicate the smallest L; norm errors in every column.
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APPENDIX: ON A CELL ENTROPY INEQUALITY

In this section, we provide the promised proofs for Lemmatta 3.7 and 3.8, which ver-
ify the cell entropy inequality for our scalar family of high-resolution central difference
methods.

We begin with a proof of Lemma 3.7.

Let R; +%(g) denote the difference,

Ryos(0) = SUsn) + U] =2 [ 000 @) Uy AD). (A1)

We now continuously deform v;(s) = v(s) = svj + (1 - 8)vj41, between v; = v(0) and
vj41 = v(1), see (3.20a). With this in mind, R’j_l_%(g) may be rewritten in the form

R;1(0) = fo ] %[RHS]ds. (4.2)

From (3.2a) we may find the dependence of v;, 1 (t + At) on the continuation parameter s

(for simplicity we omit the explicit dependerce on time):

ey (s) = Slo(s) + 03] = Aazea = 9(o(aN) (429
which in view of d
Lo(s) = Ay, (A.4)
yields
5 (uy04060) = ~U' (030 (Dl + A0 (D] B0y (45)
In a similar manner, we have
Ly(o(s)) = ~U'(0(s) - vy (49)
and Leibnitz rule gives us
4 [ ) )] = AU 06 A5 (A7)
ds u(s) 3

Substitution of (A.5), (A.6), and (A.7) intc (A.2) yields

Ryus(0) = —Bvyay [ 13 +2g 0] U'(6)) ~ Ul (oNlds (48

Next, we use the continuation v(r,s) = rvis) + (1 - r)vj+1 in (3.20b) in order to express

the last difference on the right as

U (o(s)) - U (os24(6)) = |

o dr

1 d

U'(vj+%(r,s))dr. (A.9)
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This equality comes about as follows: in view of (3.20b), (3.2a), v +1(r, s) is given by

544(r,8) = 21o(s) + 0(r, )] — Ma(u((r:5)) - 9(0(s))}; (4.10)

hence, v 1(1,8) = v(s), v41(0,8) = v;+1(s) and (A.9) follows.
Noting that

d
Jv(r,s) = Qv -, (A.11)

then by carrying out the differentiaton on the RHS of (A.9) we obtain,
d 1
cFU’(vj+%(r’ s)) = —U”(vj+%(r,s)) . [E ~ Ad'(v(r,8))] - .sAvH%. (A.12)

Substituting (A.9), (A.11) and (A.12) into (A.8), we will end up with the desired identity
(3.22)01.

We close this section with the proof of Lemma 3.8.
The piecewise linear interpolant of the gridfunction, {g;}, chosen in (3.24),

Ag~ 1
9(v) = T2 (v - ;) + g5 (4.13)
Yi+}
has a fixed slope at each cell:
Ag;
¢'(v(r,9)) = ¢'(v(s)) = 3 is g (A.14)
‘UJ+1

From (A.14) and (3.22) we obtain that in the case of quadratic entropy function where
Uu"=1,

2
1 2 |1 Agjy1
Rii(g) = 5(8v,4) [Z (AAUJ+1) } : (A.18)

Moreover, the difference 9(v) — f(v) between two neighboring values v; and Vj+1, COVErs

an area of size,

,\/w+1 f(v))dv = —[g,+1 + g,]AvJ+1 —~ /\/ f(v)dv (A.16)

Thus, in view of (A.15) and (A.16), the desired inequality, (8.26), boils down to

(Au. 1)?2 <o, (A.17)

Ag
_[QJ+1+g,] Av, +1 —-,\/ v)dv_'_ (/\A .1+§)2 +1)? <

v +i’ 8
To verify the inequality (A.17), we recall that by (3.2a), (3 2b) we have

= f(vm(t + _)) + — 8/\ Vo = f(vm(t) - _frln) + = A ma = jyj +1, (A.18)
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and Taylor’s expansion yields

B e R A R Aa(v;43(1)- (A.19)

This enables us to write the first two terms on the left of (A.17) as

Mogor + g gy =2 [ f(0)d0 = L agt) (2 ’) (Bvy, 1)t + O(80;,4)"
(A.20)
Consider now the third term on the left of (A.17): by (A.19) we have
1 . AvJ
AAgj L = AAfi1t —8-(1 —408%) - (Av“’l) Avjiy; (A.21a)

inserting AAf;, 1 = ﬁAvH%-i-O(AvH%)Z into (A.21a), squaring the result and rearranging

we obtain
1 B B, Aviyy
E(AAgﬁ%)z = '5‘(A”j+§-)2 + ’8‘“ —45%) - (Z_;i) (A”J+,) +
2
+—1——(1 —4p%)*- (f——’—t’—)2 (Av;,1)* + O(Avy; 1) (A.21b)
128 Avji1 *3 AR

We note that the cubic term on the right of (A.20), (A.21b), consists of the error in the

trapezodial rule
A Uit ) 3
STOMES NS [ s = 570D (Av;),
as well as additional contributions which are of the same order of magnitude
O(Auyy1)* < A- [N (Bvyep)* (4.22)

Inserting (A.20), (A.21b), and (A.22) into the inequality (A.17) gives us
. ' 2
L= 4B (hu,0)* Y Ay, 148 e |4

+ )\-mgx[f"(v(z))] (Av”;) <o.
(A.23)

Finally, since v; and v; +1 2gree in sign with Av; +bo the expression inside the left brackets

can be upper bounded by

' !
1 + v} +1 1 — 4p? Av,
< Vi4r T Y5 _ul____f _ _1 1467, 7 +s) |
R G i Bl e AR ey
2 2
(A.24)
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By the CFL limitation, 8 < 3

the sum of the last two terms is nonpositive, and we are
left with the inequality

vl vl
[max ( Y r’,f"l) - 1} 2 man{ (0 (2))] - Avyyy <0,

itz

which is met by the choice of entropy satisfying limiter in (3.25a), (3.25Db).
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